
Analysis of time synchronization of
OpenSky sensor nodes

Abstract—This project was mainly done with the
purpose of finding the synchronization error in Open-
Sky network. For this, we checked the messages sent
by the aircraft to two receivers and checked the offset
in their reception time. To check the correctness of
our system we compare the calculated measurements
to the ground truth value, ie; the difference in the
timestamps between two receivers should be equal
to the difference in the message propagation delay
between the two receivers to the aircraft.

I. INTRODUCTION

Time synchronization is an important aspect
in many of the mobile security systems. Time
synchronization can be internal or external time
synchronization[1]. External synchronization means
that all nodes in the network are synchronized
with an external source of time (e.g., UTC).
Internal synchronization means that all nodes in
the network are synchronized with one another, but
the time is not necessarily accurate with respect
to UTC. Synchronization can be defined as the
process of correcting the clock value of a system
to the clock value of the comparing system. For
example, in external synchronization, the system
clock value is corrected by comparing to the UTC
global time and in internal synchronization, the
system clock is corrected by comparing to the
clock value of a system inside the network, a
master node. In synchronized network, the clock
values of the systems in the network will be same.
Synchronizing the nodes at the right time is a
difficult job. Huge offset in the synchronization
between the nodes can be a threat to different types
of attacks on the system. So it is always important
to check the correctness of the synchronization in
the network.
OpenSky Network is a community-based receiver
network and synchronization should be done with

the data received from the sensors. i.e not every
sensor in the are not GPS synchronized. Even
though there exist several existing methods to
synchronize the networks, none of them provides
the solution for the problem. OpenSky requires
a time synchronization within an error standard
deviation of 100 nanoseconds. Apart from those,
ADS-B protocol is vulnerable against identifying
false positioning reports from aircraft. Researchers
have already found this vulnerability in ADS-B
based air traffic control system [2]. To tackle this
issue, OpenSky uses Multilateration navigation
technique to verify the correctness of location
claims [3]. For multilateration, three or more
synchronized sensor nodes are required.
In this project, we perform an analysis on the
synchronization of OpenSky network. Next in
Section(II) we will define our system model.
Then we will give a brief overview about the
reason for this offset. In Section(III) we discuss
the factors for errors and how we solve those
issues. Then in Section(IV), we will explain about
the representation of data, our methods and in
Section(V), we will show results of the analysis,
and follows the conclusion.

II. PROBLEM DESCRIPTION

The system model is motivated by Air Traffic
Monitoring (ATM) systems. In our model, air-
crafts accordingly broadcast a sequence of location
claims, let S = {i, j, k....} be the set of loca-
tion claim events sent to stationary receivers R=
{RA,RB ,....} using a wireless communication chan-
nel. The location claims are assumed to be three-
dimensional Euclidean coordinates. The position of
the receiver RA represented as PA = (xA, yA, zA)

where xA, yA, zA denotes the Geographic coordi-
nates latitude, longitude, and altitude of the receiver
RA respectively.

A. Time Notations

In our model, we denote the global and real
time as T . Each receiver has a local clock value
called timestamps which are a 30 bit rolling counter
value with nanosecond precision. For a receiver RA

the timestamp value is represented as tA. Simi-
larly, each receiver in our model has independent
timestamps which give their local clock values.
The time at which a location claim i sent by any
aircraft in the model at time t is represented as ti.
Similarly, position claims i sent by an aircraft in our
model received by a receiver RA at its timestamp is
denoted as tAi . But each receiver has no information
about the time ti at which the message was sent.
Each location claims are sent by the aircraft is
received at each receiver with a specific propagation
delay. Propagation delay can be calculated easily
since we have the information about the position
of receivers and an aircraft. So if the receivers are
synchronized, then location claim messages should
be with an offset in timestamps respect to their
propagation delays. But due to various factors, the
offset between the receivers varies and is unknown.
Since we can find the offset between the receivers
by using the information in a location claim and
timestamps of each message. Hence finding the
unknown offset is the primary target of this project.
This task of finding this unknown offset can helps
to synchronize the network. This can lead the way
to find the accuracy of time synchronization in
our model. But phenomenons like clock drift and
measurement errors make our task more difficult
and resynchronizing the network.
Let ΩAB

i = tAi − tBi be the offset of an event
where tAi and tBi denotes the reception timestamp
of a location claim event i, sent by an aircraft
that received by receiver RA and receiver RB

respectively. In synchronized network, the offsets
of the event should be equal to the difference in
their propagation delays. ie, Let θAB

i = ∆A
i −∆B

i

denotes the difference in propagation delay for that
event i received by the receivers RA and RB , where

Figure 1. A graphical view of the scenario

∆A
i and ∆B

i denotes the propagation delay between
receiver RA and aircraft, receiver RB and aircraft
respectively. Then synchronized network holds the
condition,

ΩAB
i = θAB

i = ∆A
i −∆B

i = tAi − tBi (1)

but this is not the case in an unsynchronized
network. So our task is to find this unknown
offset and analyze the effects considering the
different common phenomenons that make the
network unsynchronized and prevent frequent
resynchronization of the network. So let,

ΦAB
i = ΩAB

i − θAB
i = (tAi − tBi)− (∆A

i −∆B
i)

= (tAi −∆A
i)− (tBi −∆B

i)
(2)

denotes the unknown offset. Since the message
should have been sent at the same time but dif-
ferences between their reception time will gives
offset in synchronization. So as mentioned before,
the primary aim of this project is to find and analyze
about this unknown offset φ. Methods for finding
this offset is explained in the later section.

B. Mathematical Approach

Consider an aircraft and any two receivers in the
range of the aircraft. Let the two receivers be RA

and RB among the whole receivers within the range
of an aircraft F as in Fig:1. The positions of the
two receivers denoted as PA = (xA, yA, zA) and

PB = (xB , yB , zB) and a position message i from
the aircraft is denoted as Fi = (xFi , y

F
i , z

F
i) . For

our purpose, we need to find the propagation delay
between each receiver and the message send from
the aircraft. In order to calculate the propagation de-
lay, it is necessary to calculate the distance between
receivers and the aircraft when it sent the location
claim using the distance formula. Let DA

i and DB
i

denotes the distance between receiver RA and F ,
receiver RB and F respectively for each location
claim event i. To calculate the distance between two
geographic coordinates(RA and F),

1) Calculate the central angle between the coor-
dinates using following equations,

lat1 = xA ∗ π/180

lat2 = xFi ∗ π/180

lon1 = yA ∗ π/180

lon2 = yFi ∗ π/180

tmp1 = (cos(lat1) ∗ cos(lat2)∗

sin(
(lon2− lon1)

2
))2

(3)

tmp2 = (sin(
(lat2− lat1)

2
))2 (4)

From equation (3) and (4)

cAngle = 2 ∗ arcsin(
√

(tmp1 + tmp2))

2) Using central angle calculated between two
coordinates, the distance is calculated using
following equation,

radius = 6371000.8

a = radius+ zA ∗ 0.3048

b = radius+ zFi ∗ 0.3048

DA
i =

√
a ∗ ∗2 + b ∗ ∗2− 2 ∗ a ∗ b ∗ cos(cAngle)

(5)

radius denotes the radius of the earth. The al-
titude is considered in feet and the calculated
distance is in meters.

Using the calculated distance, we can calculate the
propagation delay using the following equation. i.e.

∆A
i =

DA

c

∆B
i =

DB

c

(6)

where c denotes the speed of light.
Using the above information, we can calculate the
offset between two receivers. Even we find the
offset to resynchronize the network, it is necessary
to tackle the issues of clock drift and measurement
error. So the purpose of this project is to find the
precise offset along with finding the clock drift
which helps from frequently resynchronizing the
network. We will talk about it more in the coming
section. Also for the analysis, data should be filtered
from the noise.

III. COMMON FACTORS FOR ERRORS AND THE
APPROACH

In this section, we will discuss the factors that
lead to error and its effect. We mainly discuss clock
drift, noise, multiple receptions etc.

A. Time synchronization and effects of clock drift

Time synchronization is one of the most basic
building blocks for many applications in computer
science and engineering. It is vital for any mo-
bile distributed network where security is the key
feature. Time synchronization between two mobile
nodes can be affected due to different clock speeds
on each system.The clock speed depends on the
clock’s quality, sometimes the stability of the power
source, the ambient temperature, and other subtle
environmental variables.Thus, the same clock can
have different speed at different occasions which
result in different offset. This phenomenon is de-
fined as clock drift. So synchronizing the nodes at
the right time is important, but synchronizing the
network frequently is not a cost efficient task. So
the time synchronization must be performed at the
proper interval. i.e. when the clocks of the receivers
run at different speed due to different factors, the
timestamp of the location claim messages received
varies accordingly.
The error due to clock drift εdrift linearly depends

on the duration between two time measurements.
It can be modeled by a drift coefficient txdrift for
an entity X . Assuming that X wants to measure a
period of time Λl,m = tm− tl, the clock drift error
εxdrift of Xs measurement ΛX

l,m is given by

εxdrift = Λl,m · txdrift = (tm − tl) · txdrift

Next we will discuss about possible causes for the
measurement errors in our calculation.

B. Noise

Noise is a common issue in every wireless based
communication systems. It can be either external
noise due to any undesired signal in a communi-
cation circuit or unwanted disturbances. Here we
consider the statistical noise. A statistical noise is
a colloquialism for recognized amounts of unex-
plained variation in a sample, ie errors and residuals
in statistics. The error of an observed value is the
deviation of the observed value from the true value
of a quantity of interest and the residual of an ob-
served value is the difference between the observed
value and the estimated value of the quantity of
interest. Here it can be due to the inability to find the
correct timestamp of the reception event since it is
not able to find the accurate point in time where the
location claim messages are received. But we can
model these noise in the data which depends on the
factors like bandwidth, signal energy, and sampling
of the signal which helps to find other errors in the
system. Apart from that, the noise in data might
be due to some error in the aircraft transponder,
which results in sending the same message multiple
times or multiple receptions. We will talk about the
multiple receptions in detail when we discuss data
extraction.
So to remove the measurement errors, we assume
that measurement errors are independent for each
location claim and each of its associated times-
tamps. We summarize all sources of noise in a zero-
mean Gaussian random variable ε ∼ N(0, σ2). The
variance σ2 depends on the accuracy of the system
components involved in the process. For instance,
if clocks with higher rates are used, σ2 becomes
smaller.

Figure 2. Drift of the internal clocks of three sensors compared
to a reference sensor RA

C. Approach

In this section, we describe the method. As
mentioned earlier, the goal is to predict the syn-
chronization error at any point in time with good
precision. For this, we analyze the position mes-
sages received over an interval Λl,m = tm − tl for
different receivers. For each message over this time
interval, the clock offset is calculated with respect
to one receiver. Receivers have different clock drift
depending on the surrounding factors and by finding
the clock offset over a large interval, we can predict
the clock drift for any message in the future.
The method is as follows:

1) Let RA be the referenced sensor and ∀Rx ∈
R − {RA} | x = {B,C,D..} be the other
sensors. Next, consider the position messages
for the time interval Λl,m for each sensor.

2) Let E ⊆ S be the subset of events happened
between the interval Λl,m. For an event i ∈ E,
the timestamp for the event at receiver RAand
for a receiver Rx is tAi & txi . Find the offset
of the timestamp for all the sensors Rx with
respect to reference sensor RA. i.e ∀i ∈ E,
find the ΦAx

i using equation 2 for all sensors
Rx.

3) Calculate the ΦAx
i , such that i is the first event

during interval Λl,m and let this be ΦAx
initial ,

the initial offset. Calculate the offset deviation
for every event j ∈ E | Tj>Ti.
Let βAx

j be difference between the initial
offset ΦAx

initial and ΦAx
j , i. e

βAx
j = ΦAx

initial − ΦAx
j

Now it is important to consider the upper
bound of the local timestamp counter of each
receiver during the calculation. The times-
tamp counter runs from 0 to 999999999, ie
1 Sec. Let γAx be the overflow parameter for
offset comparison between RA & Rx. Its is
incremented by 1 when the offset is more than
1 Sec. There is two case, either the clock of
the receiver Rx is running faster or running
slower compare to the reference clock RA.

a) For a receiver Rx running faster and if

tmpAj + θAx
j + βAx

k > 999999999

where k is an event happened before the
event i then calculate,

ΩAx
j = (999999999− tAj) + tBj

b) For a receiver Rx running slower and if

tmpAj + θAx
j − βAx

k < 0

where k is an event happened before the
event i then calculate,

ΩAx
j = (999999999− tBj) + tAj

Plot the offset βAx
i in a Clock Offset graph

vs Time(βAx vs T) as show in fig(2).
4) A robust linear regression over the offset

points of each sensor predicts the clock drift
for that particular sensor. In the graph the x-
axis represents the real time T in seconds and
y-axis represents the clock drift in nanosec-
onds. For the ease of explanation, we consider
three receivers RB , RC , RD. In order to
predict the offset for a sensor Rx at time
T , find the slope of the line representing the
clock drift of the sensor Rx. Drift coefficient

txdrift (also the slope of the line) for a receiver
Rx,

txdrift =
βAx
i − βAx

j

T x
i − T x

j

(7)

where T x
i & T x

j is the time at which the event
i & j occurs. So the equation will be

y = m ∗ x+ b

βAx = txdrift ∗ T + 0

b=0 since the clock drift at the start of anal-
ysis is zero.

5) The clock drift βAx
i for any event i for a

receiver Rx with respect to receiver RA in
future will be approximately ,

βAx
i = T · txdrift (8)

6) So the clock drift error εxdrift for a receiver
x of a time period Λl,m,

εxdrift = Λl,m · txdrift (9)

In the figure(2), RB , & RC are receivers with
positive slop or having local clocks running faster
than the reference clock and RD have negative slop
or local clocks running slower.
In this project, we perform an analysis on our
network to find the error in clock synchronization
between the receivers and after effects due to it. For
this purpose, we use the messages in the OpenSky
network, sent by the aircrafts. We consider two
receiver Radarcape sensors for the analyze purpose
which provides nanosecond precision but has an
error deviation up to 15 nanoseconds. Next, we
explain data representation, the methods used for
extracting the data from the database, statistics were
done on it and then the results.

IV. DETAILS ABOUT THE DATA AND NETWORK

A. OpenSky Network and ADS-B

The OpenSky Network [4] is a research
sensor network, which collects real-world air
transportation communication data at a large scale
and then provides the data to researchers. In
particular, it records the messages broadcast by
airplanes that support the Automatic Dependent

SurveillanceBroadcast (ADS-B) protocol, an
upcoming communication standard for air traffic
surveillance. Currently, OpenSky consists of 30
ADS-B receivers, mostly deployed in Central
Europe. In ADS-B, the aircrafts continuously
transmit their positions fetched by GPS to the
ground station.
In ADS-B, each position messages are Compact
Position Reporting format data, which need to
have two data frame (one odd, and one even) to
calculate one position. Compact Position Reporting
(CPR) is a way of reducing the number of bits
needed to transmit position whilst maintaining
high position resolution (≈ 5.1 meters for airborne
encoding) with 35 bits. For this, the world is
divided up into a number of zones and for
calculation, a lookup table of so-called Latitude
Zone is used. The position reports in ADS-B is
in the GPS coordinates latitude, longitude, and
altitude. The precision of the location sent by the
aircraft depends on the GPS receiver on-board
on the aircraft which has a maximum error rate
up to 15 meters. So in worst case, a position
message can have an error up to 20.1 meters due
to the inaccuracy in GPS and CPR. For successful
decoding of one position location, the receiver
should receive an even and an odd encoded
message within 10 seconds from each other.
The positions which are successfully received
are considered for the analysis. The messages
received from the aircrafts are decoded using the
decoder and later represented into a tabular form
with needed information. For example, a decoded
message contains the information as in table 1.

B. Data Representation

In this section, we give a brief overview about
the data obtained for OpenSky network. In the de-
coded data, the information which are interested for
the purpose are SensorType, SensorLatitude, Sen-
sorLongitude, SensorAltitude, TimeAtServer, Times-
tamp and RawMessage. Table 1 shows the data
received by a sensor and SensorType is the hardware
model which receives the message, in out case it can
be either SBS-3 or Radarcape receivers. Similarly,

SensorType Radarcape

SensorLatitude 51.758894

SensorLongitude -1.256654

SensorAltitude 200.0

T imeAtServer 1.429617600176156E9

T imestamp 1.32164453E8

RawMessage 8f4ca2c999119393c0041782f9ed

sensorSerialNumber Oxford

RSSIPacket 24.0

Table I. Information in a message

SensorLatitude, SensorLongitude and SensorAlti-
tude denotes the GPS position of the receiving
sensor. TimeAtServer denotes the server time in
UNIX timestamp when the particular message i
been received by the server. Timestamp denotes the
local timestamp of the receiver when the message
has been received at the sensor and RawMessage
denotes the raw message which contains either
velocity, location, identification or any other values
of the aircraft’s, but for the moment we are only
interested in the messages which provide location
information.
For the current purpose, messages which have
SensorType value Radarcape are taken into con-
sideration. Its because the Radarcape sensors can
provide better precision than SBS-3 values. Radar-
cape timestamps are 30 bit rolling timestamps with
nanosecond precision. Timestamp values can be
between 0 - (230 − 1).
For the analysis, let the location claim i received
by a sensor RA, be{

tAi , ser tmpAi ,∆
A
i }

tAi denotes the Timestamp, ser tmpAi denotes the
TimeAtServer and ∆A

i as the propagation delay.
Since the information inside the message will
not directly provide those information, we need
to calculate it. In order to calculate ∆A

i , use the
equation(2) and following the methods mentioned
in section III C.

V. DATA ANALYSIS AND RESULTS

In this section, we discuss the results after an-
alyzing the data from the network. For time syn-

Figure 3. Position of each sensors for dataset 1

chronization, a common event observed by sensors
is required. In our case, the common events are
the duplicates. Duplicates are position messages
sent from an aircraft that are received by two
or more sensors. Beforehand, the data should be
filtered from wrong position reports and multiple
receptions. Multiple receptions are the messages
that are received by the receiver more than once.
It can be due to the sampling errors in the receiver.
Due to this, we might get the same position message
more than once. Hence, a similar location claims i
can be received at two different timestamps, ie an
event tAi can have two different timestamp value.
To mitigate this, we consider the timestamp of the
first message received.
Our main goal is to accurately predict the times-

tamp of a duplicate received by one sensor from the
timestamp of another sensor. As mentioned earlier,
in a synchronized network the difference between
the timestamp sensors is equal to the difference
in propagation delay. We can achieve it either by
synchronizing to the point at which the message
reaches the server or to the time at which the
message reaches the sensors. For the former, it
necessary to consider the Internet Jitter (IJ) and
should be able to predict the IJ. Due to high IJ and
unpredictability of IJ for each sensor, we chose the
second method. We will discuss the results later.
To analyze synchronization of the network, we con-
sidered the sensors as a group of two. i.e consider

four sensors A,B,C,D and groups as (A,B), (B,C),
(C,D). In this case, if we can predict or synchronize
the offset for the sensor pair (A,B) and (B,C) results
in synchronizing or correct prediction offset for the
sensor pair (A,C). In such a way, we group the
sensors in the network. Then we performed the
following steps;

1) We checked the IJ for every message received
by the sensor pair to reach the server. We were
able to find that for each sensor pair the IJ was
in the range of microseconds.

2) Since the IJ is in the range of micro seconds,
we can find the synchronization error by
comparing value of local timestamp counter
of each sensor when a duplicate message is
received. ADS-B messages contain the posi-
tion of the aircraft when it sent the message.
Using the position information of the aircraft,
we can calculate the propagation delay for a
message to reach the sensor. This helps to
compare to our ground truth, i.e. the differ-
ence reception time in the clock values of the
sensors should be equal to the difference in
the propagation delay of the message, Equa-
tion (1).

3) We compare every pair of sensors to check
conditions 1 and 2 mentioned above.

We performed our method in two different date sets
from two different times. The number of Radarcape
sensors in the first data set was less compare to
the second data set. To increase the readability the
sensor ID’s are mapped to its location. Table 3
shows the mapping of the sensor ID to its location.
We used the first data set to test our concepts.
Figure 3, shows the position of each sensor under
consideration for the first set of data. The data
set is from 05 Dec 2015 which has data from 13
Radarcape sensors.
As the first step, we checked the IJ for the sensor
pairs. Figure (4a) shows the plot for the timestamp
of the local counter with respect to the time at which
message reached in the server from a sensor. We
repeated the process of findings the error in local
timestamp counter with respect to the TimeAtServer.
From the plot, we can observe that the sensor at
Thun:1 have lower an IJ compared to other sensors.

(a) Plot showing the timestamp and timeAtServer of each
message received by the sensor’s in data set 1

(b) Internet Jitter residual for the sensor at Thun:1 with
respect to the sensor at Oxford

Figure 4. Observation on Internet jitter

Figure 5. Internet Jitter residual for the sensor at Höheinöd
with respect to sensor at Hattersheim am Main

The reason for the low jitter is because the sensor
at Thun:1 located inside the local network of the
server. So the data from the sensor is not delayed
by Internet traffic. Figure (4b) shows the internet
jitter for the sensor at Oxford for the time period
1447486000 to 1447487000 with respect to the
sensor at Thun:1. The sensor pair has IJ within
a standard deviation error of 30 ms. Figure (5)
shows the histogram plot for the IJ residuals of the
sensor at Höheinöd with respect to the sensor at
Hattersheim am Main. The standard deviation in the
error for the sensor pair Höheinöd vs Hattersheim
am Main is 23.107 183 ms. We repeated the process

for each sensor and found that the sensor nodes
are synchronized within the range of milliseconds.
Thus, we can analyze the local timestamp counter
of sensors which are in the nanosecond precision
range for more precise results. But we found a
different behavior in IJ for certain sensors while
processing the duplicate messages. Next, we explain
this behavior shown by the sensors.

Let us consider the sensors at Hattersheim am
Main and Höheinöd. While parsing through the
duplicate messages, we found an inappropriate be-
havior for the sensor at Höheinöd. When a duplicate
message is received by the sensor at Höheinöd
and by some other sensor, the time at which the
message from the sensor at Höheinöd arrives in
server with some extra jitter. For analyzing this,
we checked the time at which several groups of
duplicate message arrived at the server. Figure (6)
and Figure (7) shows the TimeAtServer for certain
messages along with duplicate messages during two
different time period. Blue and red dots denotes
the messages from sensor at Hattersheim am Main
and Höheinöd sensor respectively. Figure (6a) and
(7a) clearly shows that the duplicate messages from
Höheinöd has an initial delay over 1.8 sec to reach
the server and delay decrease rapidly for that set

(a) Plot includes all messages received by both sensors
during the interval

(b) Plot includes only the duplicates received by both
sensors during the interval

Figure 6. Messages received by the sensor at Höheinöd and Hattersheim am Main between unix time 1447484715 and 1447484725

(a) Plot includes all messages received by both sensors
during the interval

(b) Plot includes only the duplicates received by both
sensors during the interval

Figure 7. Messages received by the sensor at Höheinöd and Hattersheim am Main between unix time 1447486795 and 1447486805

of messages. This high delay occurs only when the
sensor wants to handle a set of duplicate message.
Figure (6b) and (7b) shows the deviation for each
duplicate message during both periods. We repeated
the process for another sensor pair at Kaiserslautern
and Höheinöd and obtained similar results as in
figure 8. Also did the same process for the sensor
pair at Kaiserslautern and Hattersheim am Main as
shown in figure 9.

We noticed that this error occurs more often for the
sensor at Höheinöd. The reason for such incidents
might be due to the buffering of duplicate messages
on the server. But the reason for occurring of such
delays only for duplicates is still an open question.
The delay starts when a new group of duplicates is
received by a group of sensors and linearly decrease
for that group. Figure 10 shows the results after
analyzing the jitter for sensors at Höheinöd and

(a) Plot includes all messages received by both sensors
during the interval

(b) Plot includes only the duplicates received by both
sensors during the interval

Figure 8. Messages received by the sensor at Höheinöd and Kaiserslautern between unix time 1447485105 and 1447485115

(a) Plot includes all messages received by both sensors
during the interval

(b) Plot includes only the duplicates received by both
sensors during the interval

Figure 9. Message received by the sensor at Kaiserslautern and Hattersheim am Main between unix time 1447488035 and
1447488050

Kaiserslautern at different time. It is also the reason
to drop the initial idea of synchronizing to the point
at which the duplicate reaches the server. The IJ
are unpredictable and standard deviation in error for
sensors are in the range of milliseconds. Since the IJ
are in milliseconds, it is impossible to perform NTP
synchronization on sensors nodes. Synchronization
error in the range of milliseconds can result in
multilateration error of several kilometers.

After finding those problems, we started to work
on the new set of data. The new dataset has more
Radarcape sensors (total 15) with few of them are
GPS clock synchronized and have an additional
information ”timeAtSensor”. Apart from one node,
all other nodes were GPS synchronized for the
data set 2. Figure 11 show the position of sensors
considered in the new dataset. We performed the
same process of evaluating the IJ for the sensor

(a) Between 14th Nov 2015 07:05:19 and 07:05:22 GMT (b) Between 14th Nov 2015 07:44:19 and 07:44:21 GMT

Figure 10. Internet jitter for the sensor at Höheinöd while receiving the duplicates with respect to the sensor at Kaiserslautern

Figure 11. Position of each sensors for dataset 2

pairs in the data set 2 and obtained a similar result.
timeAtSensor was supposed to provide the second of
each day, i.e. timeAtSensor resets every 24h at time
23:59:59. But we didn’t use this information since
we found a lot of false readings for some sensors
and found that some sensors resets at different
points in time.
As mentioned earlier, the next step is to compare
reception time of the duplicate messages received
by each sensor. For this, we considered each group
of sensors and evaluate the duplicate messages.
Figure 12 shows a number of duplicate messages for
each pair i.e. thicker the link, more the number of
duplicates and vice versa. As we can observe from
the figure, the sensor at Zug has a strong connection
with others sensors in the network.
For analyzing the synchronization of the sensors,

we repeat the processes mentioned before for each
pair of sensors. Figure 17 shows the graph of pairs
used for the purpose. Figure 18 shows the result
of the sensor pair at Thun:1 and Thun:2 which are
close enough (0.016 km apart). Figure 19 shows
the sensor pair which is far apart (192.16 km
apart). The results show that the sensors can have
offset in synchronization with standard deviation of
144 276 ns.
Figure 20 shows that the clock of the sensor at Uni-
KL is drifting apart from the network synchroniza-
tion. Figure 20a and 21a shows that the sensor at
Uni-KL has a negative clock drift. i.e

• Figure 20a shows that local clock of the sensor
Uni-KL has negative clock drift with respect to
clock of the sensor at Hattersheim am Main,the

• Figure 21a shows that the sensor at Uni-KL has
negative clock drift with respect to the lock of
the sensor at Zug.

From the above observation, we can conclude
that the sensor at Uni-KL is not GPS clock
synchronized.
The next thing observed was the error in calculating
the propagation delay. The two sensors at Thun:1
and Thun:2 are placed in same position which
means the difference in propagation delay for
a message between the two sensors is zero.
i.e. according to the ground truth equation (1),
tThun:2
i = tThun:1

i for any event i. Figure 18b
shows the residual distribution for the offset in
timestamps. Since the sensors at Thun:1 and

Figure 12. Amount of duplicate pairs

Thun:2 are placed in similar position, they are
synchronized with a standard deviation for residuals
40.184 670 67 ns. Thus, we can conclude that error
in propagation delay estimation also affects our
result. Also, while observing the plot for the
offset of timestamps with respect to TimeAtServer
for a sensor pair, we observed some patterns.
For example, Figure 13 shows the offset for the
sensor pair at Dübendorf and Zug. Offsets can
seen as waveforms with some rapid jumps for a
certain point in time. This continuous waveforms
shows the error in calculation of propagation delay
estimation. Also Figure 18 gives the ideas about
how the timestamp counter works in Radarcape.
The jumps in offset shows that the counter
increments the value every 15 seconds (figure
shows 6 lines in every 100 seconds). We found the
same jumps every other plots too.
As you can observe from the Figure 12, a sensor at
Zug overlapping lot of other sensors and thus we
have the most duplicate message for this sensor.
We analyzed the error in the synchronization for
those sensors overlapping Zug’s coverage area and
analyzed the standard deviation in their errors. The
intention is to compare the variation of error with
respect to difference in distance, and difference in
bearings between the sensor at Zug. As mentioned

Figure 13. Offset in timestamp for the sensor at Dübendorf
with respect to the sensor at Zug

earlier, Figure 13 shows the offset of local clock
for the sensor at Dübendorf with respect to sensor
at Zug. From the plot, we can observe that for a
certain TimeAtServer there is two different offset
value for different duplicate message. As per the
Equation 1, offset can either due to the difference
in the local clocks or due to the error in calculating
the propagation delay. In this case, we can conclude
that the error in calculation of propagation delay
is also included in synchronization error. The next
step is to find this error and reduce this error.

As mentioned earlier, to calculate the distance
between an aircraft and a ADS-B receiver, the

Figure 14. Propagation delay with respect to difference in
distance for sensor at Hattersheim am Main with respect to the
sensor at Zug

haversine model was used. In order to estimate the
error in the calculation of propagation delay, we
tried different propagation delay models. First the
results were compared with results of Geodetic
Reference System 1980 (GRS 80) [5] model
which considers the earth as the ellipsoid and with
World Geodetic System 1984 (WGS 84) model
which is an improvement of the GRS 80 model.
WGS 84 defines two models, a geometric model
that describes earth as an ellipsoid of revolution
characterized by the semi-major axis and earth
flattening, and a physical model that relates to
the average level of the oceans [6]. An upgrade
to WGS 84 model is the Earth Gravitational
Model 1996 (EGM 96) defines a geoid based on
the gravitational force of the Earth. The altitude
provides by GPS is the height over the referential
ellipsoid. Next we compare the distance measures
obtained using haversine model with GRS 80 and
WGS 84.
In order to remove the error due to propagation
delay calculation, we first analyzed the offset in
the synchronization error for each sensor pair with
respect to the difference in the distance between
sensors and aircraft, i.e. the distance between
sensor 1 and aircraft minus the distance between
the sensor 2 and aircraft. For synchronized sensor
pairs, the time taken by the message to travel this

distance should be the difference in their arrival
time. Thus, we can predict the error in calculating
the propagation delay and reduce for each duplicate
messages.

For example, consider the sensor pair at
Hattersheim am Main and Zug with haversine
propagation delay model. The sensors are 198.717
Kms apart. Figure 15a shows the offset in the
synchronization with respect to the time at which
message reaches the server. Figure 16a shows the
histogram for distribution of the error. As the next
step, we calculate the error due to propagation
delay with respect to the difference in distance and
Figure 14 shows the result. As we can observe from
the plot, the offset increases linearly with respect
to the difference in distance. So using the equation
of the line, we can predict the error in offset with
respect difference in distance. We reduced this
error due to the calculation of propagation delay
and Figure 15b shows the result. Figure 16b shows
the histogram for distribution of the error and we
can observe the improvement of residual standard
error from 229408.5283ns to 1096.2766ns. We
repeat this process for each sensor pair in the
network and observed similar improvement. For
example, Table II gives the equation for estimation
of error each sensor pair depending on the distance
difference, differenceInDistance. The distance
should be in meters and Error to be reduced is in
nanoseconds. Thus, we can modify the equation 2
as,

ΦAB
i = ΩAB

i − θAB
i = (tAi − tBi)

−(∆A
i −∆B

i)− Errord
(10)

where Errord is error for the difference in distance,
i.e. DA

i - DB
i .

As mentioned earlier, to calculate the distance
between an aircraft and a ADS-B receiver, the
haversine model was used. For further improvement
in the estimation of error due to propagation delay,
we tried the same calculation by considering other
models. We calculated difference in the distance
calculation for a set position report among each
model. Figure 22, 23 and 24 shows the results.
As we can see, using either GRS 80 or WGS 84
will give a better result compare to using haversine

(a) Including the error in propagation delay calculation (b) Excluding the error in propagation delay calculation

Figure 15. Synchronization offset for the sensor pair Hattersheim am Main vs Zug

(a) Including the error in propagation delay calculation

(b) Excluding the error in propagation delay calculation

Figure 16. Histogram showing residual distribution Hattersheim am Main vs Zug

Table II. Equation for estimating the error during the calculation propagation delay WGS 84 model

Sensor Pair Equation

Belp vs Zug Error = 2.998491e+03 + (3.340290e+00 * differenceInDistance)

Hofheim am Taunus vs Zug Error = -5.299840e+02 + (3.342852e+00 * differenceInDistance)

Lupfig vs Zug Error = 2.785623e+02 + (3.246888e+00 * differenceInDistance)

Dübendorf vs Zug Error = -1.332355e+02 + (3.299196e+00 * differenceInDistance)

Thun:2 vs Zug Error = 1.077133e+03 + (3.267332e+00 * differenceInDistance)

Hattersheim am Main vs Zug Error = 2.492813e+02 + (3.329933e+00 * differenceInDistance)

Lachen vs Zug Error = 3.533047e+02 + (3.280929e+00 * differenceInDistance)

Binningen vs Zug Error = 2.641018e+02 + (3.280574e+00 * differenceInDistance)

Thun:1 vs Zug Error = 4.377751e+02 + (3.296593e+00 * differenceInDistance)

Burgdorf vs Zug Error = 2.825037e+02 + (3.306096e+00 * differenceInDistance)

Figure 17. Plot representing the pairs

(a) offset vs timeAtServer (b) Histogram showing the offset

Figure 18. Sensor pair Thun:1 vs Thun:2

(a) offset vs timeAtServer (b) Histogram showing the offset

Figure 19. Sensor pair Zug vs Binningen

(a) offset vs timeAtServer (b) Histogram showing the offset

Figure 20. sensor pair Hattersheim am Main vs Uni-KL

model. We repeat this each sensor observed similar
improvement. For example Figure 25 shows the
difference in the standard deviation in residual error
with respect to the difference in distance, depending
on the propagation delay model. Figure 26 shows
the difference with respect to the difference in
bearings between sensors. Even after removing the
error due to the calculation of propagation delay,
error exists within the limit of 2000 ns or 2 µs. This
can be due to several reasons and next we discuss
it.

One of the reason may be the error in the position
reports sent by the aircraft. The altitude sent by air-
crafts are pressure altitudes which are different from
true altitude [7]. In order to calculate the true alti-
tude, information such as the atmospheric pressure
of that particular position and others are required.
In our calculation, we assume pressure altitude as
the true altitudes, i.e. the height from referential
ellipsoid. The altitude value sent from aircraft set
the atmospheric pressure as 29.92 inHg/1013 hPa
for its calculation. This difference between pressure

(a) offset vs timeAtServer (b) Histogram showing the offset

Figure 21. sensor pair Zug vs Uni-KL

Figure 22. Histogram showing the difference in distance cal-
culation for GRS80 with respect to WGS84 model.

Figure 23. Histogram showing the difference in distance cal-
culation for GRS80 with respect to haversine model.

Figure 24. Histogram showing the difference in distance cal-
culation for WGS84 with respect to haversine model

Figure 25. Plot showing the difference in synchronization with
respect to the difference in distance, depending the propagation
delay model.

Figure 26. Plot showing the difference in synchronization with
respect to the difference in bearings, depending the propagation
delay model.

altitude and true altitude adds error in the distance
calculation. Another reason for the error is the
inaccuracy in the position information of the re-
ceivers. The GPS position of a node in the OpenSky
network is given by the user. This inaccuracy can
also contribute the error in calculating the distance
between an aircraft and receiver.

VI. CONCLUSION

The goal of the project was to analyze the time
synchronization of the sensor nodes in the OpenSky
network. To achieve the target we analyzed two data
sets from a different point in time. To use the data
sets, the data sets were filtered from wrong position
reports, multiple receptions and from other errors.
While analyzing the data, we found out the faults in
the network such as the unpredictable Internet Jitter
for some sensors while processing ”duplicates”, the
incorrect values for timeAtSensor, unsynchronized
nodes in the network and so on. We also checked
the precision of Radarcape timestamp counters. To
improve the accuracy in calculating the distance
between an aircraft and receiver, and to reduce the
error in the calculation of difference in propagation
delays, we analyzed the error rate with respect to the
difference in the distance traveled between aircraft
and receivers. Even though it was able to remove the
error in the calculation of propagation to a certain
limit, the timestamp at which a duplicate received

by a sensor can be predicted with a timestamp
of another sensor with an upper limit in error of
2000 ns or 2 µs. We also tried different methods
to synchronize the network, but found that those
methods will not give synchronization with in the
range of nanoseconds. For further improvement, the
position reports of the sensors need to be precise.

REFERENCES

[1] “Time Synchronization,” http://www.cs.usfca.edu/∼srollins/
courses/cs686-f08/web/notes/timesync.html, accessed:
2016-01-23.

[2] M. Schfer, V. Lenders, and I. Martinovic, “Experimental
analysis of attacks on next generation air traffic commu-
nication,” in Applied Cryptography and Network Security
(ACNS ’13), ser. Lecture Notes in Computer Science, vol.
7954. Springer Berlin Heidelberg, Jun. 2013, pp. 253–271.
[Online]. Available: discofiles/publicationsfiles/SLM13.pdf

[3] M. Schäfer, V. Lenders, and J. Schmitt, “Secure track
verification,” in 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 199–213.

[4] M. Schfer, M. Strohmeier, V. Lenders, I. Martinovic, and
M. Wilhelm, “Bringing Up OpenSky: A Large-scale ADS-
B Sensor Network for Research,” in Proceedings of the
13th International Symposium on Information Processing
in Sensor Networks, ser. IPSN ’14, Berlin, Germany, April
2014, pp. 83–94.

[5] H. Moritz, “Geodetic reference system 1980,” Journal of
Geodesy, vol. 54, no. 3, pp. 395–405, 1980.

[6] J. Schreuders, “Tracking aircraft with parsax,” Ph.D. disser-
tation, TU Delft, Delft University of Technology, 2014.

[7] “The Different Types of Altitudes,” http://www.meretrix.
com/∼harry/flying/notes/altitudes.html, accessed: 2016-04-
23.

Sensor ID Location
1998347310 Burgdorf

1801228973 Binningen

956151203 Lachen

699700118 Hattersheim am Main

80704752 Herbligen

1802033692 Thun:1

13020235 Oxford

820995539 Kaiserslautern

1344380651 Höheinöd

80602915 Dübendorf

1344390019 Uni-KL

80389995 Belp

80592813 Hofheim am Taunus

80596247 Lupfig

954778341 Zug

81650811 Thun:2

956189702 Padova PD

Table III. Table showing the sensor ID of the sensor’s in a
location

